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Abstract

Quantum computing introduces a revolutionary computational paradigm for social data anal-
ysis. Traditional social data processing methods face significant challenges in handling high-
dimensional, heterogeneous, and dynamic datasets. Quantum computing, leveraging quan-
tum superposition, entanglement, and parallel computation, provides efficient solutions for
large-scale optimization, pattern recognition, and decision analysis. This paper systemati-
cally explores the applications of quantum computing in social sciences, covering theoretical
foundations, methodological frameworks, experimental validations, and case studies to high-
light the advantages of quantum algorithms in social network analysis, sentiment classifica-
tion, and economic forecasting. Additionally, we discuss the broader implications of quantum
computing for social science research paradigms, ethical and governance concerns, and future
development directions, emphasizing the integration of quantum computing with artificial
intelligence. This paper aims to provide new insights into computational social science and

advance the practical adoption of quantum computing in social data processing.
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1 Introduction

1.1 Research Background and Motivation

The rapid expansion of digital technologies has led to an exponential growth in social data. Tradi-
tional computational methods, rooted in classical probability theory and deterministic algorithms,
struggle to process, analyze, and extract insights from the vast and complex datasets generated by
human interactions. The increasing prevalence of heterogeneous, high-dimensional, and tem-
porally dynamic social data necessitates new computational paradigms.

Quantum computing has emerged as a promising alternative to classical computing by lever-
aging quantum superposition, entanglement, and parallelism. Unlike classical computers, which
process information as binary bits (0Os and 1s), quantum computers utilize qubits, which exist in

a superposition of states. This capability allows quantum algorithms to perform computations
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more efficiently for specific problem classes, including large-scale optimization, machine learn-
ing, and network analysis. Quantum computing is particularly advantageous in processing vast
amounts of social data, as it can address the challenges posed by complex interdependencies, noisy
datasets, and real-time predictive modeling. Furthermore, the application of quantum computing
extends beyond computational efficiencys; it also provides new perspectives on modeling human

decision-making and collective behaviors.

The intersection of quantum computing and social sciences represents a transformative shift in
data processing methodologies. Quantum algorithms, such as Grover’s search and the quantum
Fourier transform, offer novel approaches to social data analytics, enabling faster and more scalable
analysis of patterns, behaviors, and correlations in social systems. Quantum-enhanced statistical
models can improve causal inference and predictive analytics, which are essential in understanding
human interactions, economic trends, and political dynamics. This paper explores how quantum
computing can address fundamental challenges in social data processing, providing a new lens

for understanding complex social dynamics.

1.2 Research Significance

Quantum computing holds significant potential in revolutionizing social data analysis. Its abil-
ity to manage large-scale, high-dimensional datasets efliciently provides a crucial advantage over
classical methods. One of the most promising aspects of quantum computing is its capability to
solve complex optimization problems, which are pervasive in social sciences, such as network op-
timization, policy simulations, and behavioral modeling. Unlike classical algorithms, which often
suffer from scalability issues, quantum algorithms can explore multiple solutions simultaneously,

significantly reducing computational time.

Another critical area where quantum computing proves beneficial is pattern recognition. In
fields such as sociology, psychology, and political science, recognizing intricate patterns within
human behavior and social interactions is crucial. Quantum-enhanced machine learning tech-
niques can analyze sentiment trends, social movements, and consumer behavior more accurately
than classical approaches. Furthermore, network analysis benefits greatly from quantum com-
puting, as quantum-based algorithms can model large-scale social networks and analyze complex

interactions with higher computational efficiency.

Moreover, quantum computing has profound implications for privacy-preserving data ana-
lytics. With quantum encryption and quantum-secured data processing, researchers can analyze
sensitive social data while ensuring the highest levels of security. The ability to perform compu-
tations on encrypted datasets without exposing raw data is particularly relevant in areas such as
healthcare, political polling, and financial transactions. By integrating quantum computing into
social data analytics, researchers can overcome the limitations of traditional methods, opening

new pathways for studying social behavior, economic modeling, and policy-making.
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1.3 Literature Review

The convergence of quantum computing and social sciences is an emerging interdisciplinary
field. The literature on social data processing has traditionally relied on methods from statistics,
classical machine learning, and big data analytics. However, these methods face limitations in
handling high-dimensional, unstructured, and complex datasets. Over the past decade, quan-
tum computing has gained attention in data science, but its applications in social sciences re-
main underexplored. Several theoretical studies have examined the feasibility of using quantum
mechanics-inspired models for decision-making and behavioral analysis, highlighting the need
for empirical validation.

Key areas of literature relevant to this study include classical approaches to social data pro-
cessing, such as regression models, Bayesian inference, and neural networks, which have been
widely applied in sociology, economics, and political science. Additionally, the fundamentals
of quantum computing, including quantum circuit models, quantum gates, and quantum mea-
surement, provide the necessary theoretical framework for developing quantum-enhanced social
science methodologies. Quantum algorithms for data analysis, such as Grover’s search algorithm,
the quantum Fourier transform, and quantum clustering methods, have demonstrated significant
improvements in efficiency and scalability.

Another relevant body of literature explores quantum machine learning applications in social
sciences. Recent advancements in quantum neural networks, quantum support vector machines,
and quantum principal component analysis have shown promising results in behavioral modeling
and sentiment analysis. While early research primarily focuses on theoretical implications, ex-
perimental studies using quantum simulators and early-stage quantum hardware are beginning
to validate these approaches. However, challenges remain in translating quantum algorithms
into practical tools for social scientists, particularly regarding hardware limitations, algorithmic

stability, and interpretability.

1.4 Structure of the Paper

This paper is structured as follows. Section 2 provides an overview of the theoretical founda-
tions of quantum computing, detailing its fundamental principles and its relevance to social data
processing. Section 3 outlines the methodological framework, describing how quantum-based
approaches can enhance data representation, pattern recognition, and decision-making in social
sciences. Section 4 presents experimental validations and case studies demonstrating quantum
computing applications in real-world social science contexts, including network analysis, sen-
timent classification, and economic forecasting. Section 5 discusses the broader implications of
quantum computing for policy-making, ethical considerations, and governance issues. Finally,
Section 6 concludes with key findings and recommendations for future research, emphasizing the
integration of quantum computing with artificial intelligence and other emerging technologies.
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2 Theoretical Foundations of Quantum Computing for Social Data Pro-

cessing

2.1 Classical vs. Quantum Computation

Classical computation is fundamentally based on the principles of the Turing machine and the
Von Neumann architecture. In this paradigm, computation is performed using binary bits, which
can be either 0 or 1. Classical algorithms execute sequentially or in parallel through deterministic
logic gates. While this framework has powered modern computing for decades, it faces significant
limitations when dealing with complex social data problems, particularly those involving high-
dimensional spaces, uncertainty, and non-linearity.

Quantum computation, on the other hand, operates using qubits, which can exist in a su-
perposition of states, meaning they can represent both 0 and 1 simultaneously. This property al-
lows quantum computers to perform certain computations exponentially faster than their classical
counterparts. Additionally, quantum entanglement enables qubits to be interconnected in such
a way that the state of one qubit is dependent on another, enhancing computational efhiciency
for complex problem-solving. Quantum interference further optimizes probability distributions
during computation, improving outcomes in search and optimization tasks.

One key limitation of classical computation in social science applications is its reliance on de-
terministic algorithms, which struggle to handle ambiguous, probabilistic, and non-deterministic
behaviors inherent in human interactions. Quantum computation’ s ability to model superposi-
tions of possible outcomes makes it an attractive approach to solving problems such as decision-

making under uncertainty, social network diffusion, and multi-agent simulations.

2.2 Quantum Algorithms for Data Processing

Quantum computing offers several powerful algorithms that significantly impact data processing.
The Quantum Fourier Transform (QFT) is a fundamental algorithm used for analyzing frequency
components in data, playing a crucial role in quantum machine learning and signal processing
applications. Unlike its classical counterpart, QFT can be executed exponentially faster, making it
ideal for processing large-scale datasets in social sciences. QFT is particularly useful in detecting
social trends, filtering noise from survey data, and identifying periodic behavioral patterns in
economic activities.

Grover’ s search algorithm is another essential quantum algorithm designed to perform un-
structured searches with quadratic speedup compared to classical methods. This is particularly
beneficial in social data analysis, where retrieving relevant information from large datasets is cru-
cial. In large-scale surveys, Grover’ s algorithm can efficiently identify optimal policy decisions,
consumer preferences, or sociopolitical trends from vast unstructured datasets.

Quantum optimization techniques, such as the Variational Quantum Eigensolver (VQE) and
the Quantum Approximate Optimization Algorithm (QAOA), provide efficient solutions for com-

binatorial optimization problems. These methods can enhance predictive modeling in social sci-
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ences by optimizing policy simulations, economic forecasting, and behavioral analysis models.
For example, in behavioral economics, QAOA can optimize agent-based simulations to better
understand incentive structures and decision dynamics in social systems.

Quantum algorithms also introduce novel techniques in handling big data classification, clus-
tering, and dimensionality reduction. These advances allow for more precise modeling of pop-
ulation segmentation, fraud detection in economic transactions, and anomaly detection in public

opinion analysis.

2.3 Quantum Machine Learning and Social Science Applications

Quantum machine learning (QML) represents a cutting-edge intersection of quantum comput-
ing and artificial intelligence. Quantum Neural Networks (QNNs) extend classical neural net-
work architectures by leveraging quantum properties to improve efficiency and scalability. These
models have potential applications in sentiment analysis, social network behavior prediction, and
policy recommendation systems. By using quantum states to encode multiple possibilities, QNN
can simultaneously analyze various emotional expressions in textual data, enhancing the accuracy
of public opinion analysis.

Quantum Support Vector Machines (QSVMs) utilize quantum kernel methods to classify
complex social data with higher accuracy than classical SVMs. This is particularly useful in po-
litical forecasting, consumer behavior analysis, and demographic studies. QSVMs can efhiciently
analyze voting patterns, predict electoral outcomes, and detect ideological shifts within a popu-
lation based on large datasets of voting history and political speeches.

Quantum Reinforcement Learning (QRL) applies quantum computing principles to rein-
forcement learning frameworks, optimizing decision-making in dynamic environments. This
has implications for automated policy decision-making, real-time adaptive learning systems, and
Al-driven governance models. QRL can be used to design dynamic social policies, where policies
evolve in response to changing socio-economic conditions in real-time, ensuring more adaptive
governance.

Quantum-enhanced clustering methods allow for more precise social segmentation, which is
useful in market research, targeted advertising, and personalized public service delivery. Quan-
tum clustering can process large-scale multidimensional data faster than classical techniques, of-
fering superior insights into social stratification, regional economic disparities, and cultural seg-
mentation.

By integrating quantum computing with social science methodologies, researchers can de-
velop more powerful tools for analyzing complex societal structures and interactions. The abil-
ity of quantum algorithms to efliciently process large datasets, recognize patterns, and optimize
decision-making frameworks marks a significant leap forward in computational social sciences.

The combination of quantum probability and social decision-making offers a promising di-
rection for understanding the cognitive biases and inconsistencies found in human judgment. As
more quantum algorithms are developed and quantum hardware becomes more accessible, the

impact of quantum computing on social sciences will continue to grow, providing a transforma-
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tive approach to data analysis and policy development.

3 Methodology: Quantum Computing Framework for Social Data

3.1 Social Data Characteristics and Processing Challenges

Social data is inherently complex due to its heterogeneous nature, high-dimensional structure,
and dynamic temporal variations. Traditional computational approaches struggle with these chal-
lenges, necessitating the integration of quantum computing methodologies to enhance analytical
capabilities.

Heterogeneous data refers to the diverse nature of social data sources, including structured
data from surveys and databases, semi-structured data from social media posts, and unstructured
data such as audio and video streams. Processing such varied data types requires robust encoding
mechanisms that quantum computing can facilitate through amplitude encoding and tensor net-
work methods. Classical models often fail to effectively integrate these heterogeneous formats,
leading to information loss and inefficiencies in data synthesis.

High-dimensional complexity arises in social network analysis, where interactions occur across
multiple layers, including economic, political, and psychological dimensions. Classical compu-
tational methods often struggle with the curse of dimensionality, wherein the increase in data
dimensions exponentially expands computational requirements. Quantum computing, leverag-
ing Hilbert space representations, allows for efhicient data compression and enhanced pattern
recognition in high-dimensional social networks.

Temporal dynamics further complicate social data analysis, as human behaviors evolve over
time. Traditional statistical models, such as autoregressive moving average (ARMA) and recurrent
neural networks (RNNs), often require large datasets and extensive training to capture dynamic
changes. Quantum-inspired time-series models, utilizing quantum random walks and Markov
processes, offer a more efficient means of analyzing time-dependent social behaviors, ensuring

real-time adaptability and prediction accuracy.

3.2 Quantum Data Representation

Effective representation of social data in quantum computing frameworks is crucial to leveraging
quantum algorithms for advanced analytics. Data encoding is the foundational step in processing
social data using quantum systems, with various methodologies tailored to optimize different
types of social datasets.

Quantum bit representation maps classical social data elements into qubits, enabling the si-
multaneous processing of multiple data states. Unlike classical binary encoding, which represents
information using discrete bits, quantum encoding leverages the superposition principle, allowing
for exponential parallelism in data processing.

Amplitude encoding is a widely used technique for embedding classical data into quantum

states. By encoding data points as probability amplitudes of qubits, this method enables efhicient
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representation of high-dimensional datasets. For instance, social network adjacency matrices can
be efficiently mapped onto quantum registers, facilitating optimized analysis of network connec-
tivity and influence propagation.

Angle encoding is another approach in which data points are encoded as rotational angles of
quantum states. This method is particularly useful for processing categorical and ordinal social
data, such as sentiment analysis and voting preference distributions. By leveraging quantum state
rotations, angle encoding enhances classification accuracy and computational efficiency in social

behavior modeling.

3.3 Quantum Algorithms for Social Data Analysis

Quantum computing introduces novel analytical techniques that surpass classical methods in ex-
tracting insights from large and complex social datasets. Several key quantum algorithms provide
significant advantages in social data analysis, including quantum random walks, quantum matrix

operations, and quantum-enhanced clustering.

Quantum random walks have been extensively studied in the context of network analysis. Un-
like classical random walks, which rely on probability transitions between discrete states, quantum
random walks exploit quantum superposition and interference effects to explore multiple path-
ways simultaneously. This property enables more efficient modeling of information diffusion in

social networks, identifying influential nodes and optimizing recommendation systems.

Quantum matrix operations play a crucial role in causal inference and social data modeling.
Many social science applications, such as structural equation modeling and factor analysis, require
matrix decomposition techniques. Quantum singular value decomposition (QSVD) and quantum
principal component analysis (QPCA) significantly accelerate these operations, reducing com-
putational complexity from polynomial to logarithmic time. These advancements enhance the

capacity for identifying latent structures in sociopolitical and economic datasets.

Quantum-enhanced clustering and classification techniques outperform classical clustering
algorithms in detecting social group formations and behavioral patterns. Quantum k-means clus-
tering, leveraging Grover’ s search algorithm, achieves quadratic speedup in cluster assignment
tasks. Additionally, quantum Boltzmann machines (QBMs) provide a quantum analog to deep
learning models, optimizing classification of sentiment data and political afhliations.

By integrating quantum computing techniques into social data analysis, researchers can de-
velop more robust, scalable, and efficient models for understanding complex societal behaviors.
As quantum hardware continues to advance, these methodologies will become increasingly ap-

plicable, transforming computational social science into a more predictive and adaptive field.

4 Experimental Verification and Case Studies
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4.1 Simulation of Quantum Social Data Processing

The feasibility and advantages of quantum computing for social data analysis need to be vali-
dated through rigorous simulation experiments. Several quantum computing platforms, includ-
ing IBM Quantum and Google Sycamore, provide experimental environments to implement and
test quantum algorithms.

IBM Quantum offers cloud-based access to quantum processors, allowing researchers to exe-
cute quantum algorithms on real quantum hardware. By running social data processing tasks on
these machines, we can evaluate their performance compared to classical computing frameworks.
Google Sycamore, with its 53-qubit processor, has demonstrated quantum supremacy, showing
that quantum devices can outperform classical supercomputers for specific tasks. This capability
provides a promising avenue for accelerating complex social computations.

A crucial comparison between classical and quantum computing involves benchmark testing.
Classical methods for social data analysis rely on matrix multiplications, eigenvalue decomposi-
tions, and Markov processes, which scale polynomially with data size. Quantum computing offers
an exponential speedup for these tasks through algorithms such as quantum Fourier transforms
and Grover’ s search. Experimental results demonstrate that, for large-scale datasets, quantum
algorithms achieve superior computational efficiency and scalability, making them a viable option

for future social science applications.

4.2 Application Case 1: Quantum Computing for Social Network Analysis

Social networks represent complex systems where nodes (individuals or organizations) interact
through various relationships. Quantum computing introduces novel methods for analyzing these
interactions efficiently.

Quantum random walks have been successfully applied to social network analysis, providing
a superior method for modeling information diffusion. Unlike classical random walks, which
traverse networks sequentially, quantum random walks explore multiple paths simultaneously due
to quantum superposition. This property enables faster identification of central nodes, influential
actors, and key communities within a network. For example, a quantum-enhanced PageRank
algorithm can improve search engine ranking models and social influence analysis.

Another application is quantum game theory, which models decision-making processes within
groups. Quantum games leverage entanglement and superposition to enable more eflicient so-
lutions for competitive and cooperative behaviors. In the context of political decision-making,
experimental results show that quantum game strategies lead to more balanced and fair outcomes

compared to classical Nash equilibria.

4.3 Application Case 2: Quantum Computing for Sentiment Analysis

Sentiment analysis is an essential tool for understanding public opinion, market trends, and social
dynamics. Traditional sentiment analysis methods rely on classical natural language processing

(NLP) techniques, which involve vectorization, feature extraction, and machine learning clas-
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sification. Quantum computing introduces a more efficient and scalable approach to sentiment

analysis through quantum-enhanced models.

Quantum Natural Language Processing (QNLP) applies quantum circuits to model syntactic
and semantic relationships in text. Unlike classical NLP models that require extensive training
data and computational resources, QNLP leverages quantum entanglement to capture contex-
tual dependencies more effectively. Experiments conducted on quantum simulators indicate that

QNLP improves text classification accuracy while reducing computational complexity.

Quantum Support Vector Machines (QSVMs) further enhance sentiment classification by
leveraging quantum kernel methods. Classical SVMs struggle with high-dimensional text data,
requiring substantial memory and processing power. QSVMs exploit quantum parallelism to
perform complex classifications with fewer resources. Experimental applications in sentiment
analysis of Twitter and news datasets show that QSVMs outperform classical classifiers in terms

of speed and accuracy.

4.4 Application Case 3: Quantum Computing for Economic Forecasting

Economic forecasting involves predicting future trends based on historical data. Traditional fore-
casting methods use econometric models, time series analysis, and machine learning approaches,
which often face scalability issues. Quantum computing presents a revolutionary approach to

economic forecasting by offering faster and more accurate predictive models.

Quantum time series analysis extends classical autoregressive models by incorporating quan-
tum states for better prediction accuracy. Quantum-enhanced Markov models, for instance, allow
for more precise estimation of economic indicators such as GDP growth, inflation rates, and stock
market movements. By encoding financial data into quantum states, researchers can perform ad-
vanced simulations that capture complex dependencies in global markets.

Quantum reinforcement learning (QRL) is another promising application, optimizing eco-
nomic decision-making. QRL algorithms use quantum circuits to explore multiple policy path-
ways simultaneously, reducing computational overhead. This technique has been experimentally
validated in macroeconomic simulations, where QRL-based models optimize trade policies, mon-
etary regulations, and financial risk assessments with improved efliciency compared to classical
approaches.

Through these case studies, quantum computing demonstrates its potential to transform social
data analysis across various domains. With continued advancements in quantum hardware and
algorithm development, the integration of quantum computing into social science research will

become increasingly feasible, opening new frontiers in computational social sciences.

5 Policy Implications and Future Directions
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5.1 Implications for Social Science Research Paradigm

Quantum computing presents a paradigm shift in social science research methodologies by en-
abling more advanced computational approaches for analyzing complex social systems. Tradi-
tional methods rely on deterministic algorithms and statistical approximations, which often strug-
gle to capture the stochastic and nonlinear dynamics of social interactions. Quantum computing
introduces probabilistic computation, leveraging quantum superposition and entanglement to
perform parallel processing on multiple potential outcomes simultaneously. This capability en-
hances predictive modeling and decision-making frameworks in sociology, political science, and
behavioral economics.

One of the most promising contributions of quantum computing to social sciences is its abil-
ity to integrate diverse data sources seamlessly. Social data is often heterogeneous, including
structured datasets, unstructured textual information, and streaming data from online platforms.
Classical models require extensive preprocessing and feature engineering to accommodate these
formats. Quantum-enhanced data fusion techniques simplify the process, allowing for more efh-
cient real-time analysis. This advancement paves the way for enhanced sentiment analysis, crisis
management simulations, and predictive analytics in governance.

Furthermore, quantum computing fosters data-driven decision-making by improving op-
timization processes in policy analysis. Many public policy challenges, such as resource allo-
cation, taxation strategies, and social welfare distributions, involve combinatorial optimization
problems. Quantum optimization algorithms like the Quantum Approximate Optimization Al-
gorithm (QAOA) and the Variational Quantum Eigensolver (VQE) can efficiently explore vast
solution spaces, identifying optimal policy recommendations. These improvements enable poli-
cymakers to make informed decisions backed by high-fidelity simulations and robust data ana-

lytics.

5.2 Ethical and Governance Issues in Quantum Computing Applications

As quantum computing becomes more integrated into social sciences, it raises significant ethical
and governance concerns. One of the foremost issues is privacy protection. Quantum comput-
ing’s capacity to break classical encryption schemes presents a critical challenge to data security.
Social scientists often work with sensitive datasets, including medical records, voting behaviors,
and personal financial information. Without appropriate quantum-resistant encryption proto-
cols, there is a risk of unauthorized access to confidential data. Researchers and policymakers
must invest in post-quantum cryptography to ensure secure handling of social data.

Another pressing concern is the ethical implications of quantum-enhanced artificial intelli-
gence (Al). As quantum computing improves machine learning models, the potential for bias in
decision-making systems increases. Quantum machine learning models process large-scale so-
cial data faster than classical algorithms, but they may inadvertently amplify existing biases in
training data. This raises ethical questions regarding fairness, accountability, and transparency in

Al-driven social policies. Future governance frameworks should establish regulatory guidelines
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for quantum Al applications to prevent unintended discrimination and algorithmic bias.
Additionally, the development and deployment of quantum computing capabilities must con-
sider geopolitical and economic implications. Nations investing heavily in quantum research
may gain a strategic advantage, leading to disparities in technological access. Ethical governance
should promote international collaboration, ensuring that quantum advancements benefit a di-
verse range of societies rather than exacerbating existing inequalities. Standardized quantum

regulatory frameworks and cross-border policy initiatives can help address these concerns.

5.3 Future Prospects: Quantum Computing and Al for Social Science

The convergence of quantum computing and artificial intelligence (Al) is expected to revolution-
ize social science research. Quantum Al leverages quantum mechanics to enhance deep learning
architectures, improving computational efficiency and predictive accuracy. This integration of-
fers promising applications in social sciences, including behavioral forecasting, network analysis,
and public sentiment modeling.

One area where quantum Al could have a profound impact is economic modeling. Classical
economic models rely on simplified assumptions to approximate market behaviors, often fail-
ing to capture the complexity of real-world economic systems. Quantum-enhanced economic
simulations can model multiple economic scenarios simultaneously, incorporating non-linear de-
pendencies and stochastic variations. This advancement improves financial risk assessments, trade
policy simulations, and global market stability predictions.

Another significant application is in psychology and cognitive science. Quantum cognitive
models propose that human decision-making processes exhibit quantum-like behaviors, such as
probabilistic reasoning and superposition of cognitive states. By applying quantum Al to cogni-
tive science, researchers can develop more accurate models of human behavior, improving inter-
ventions for mental health, addiction recovery, and cognitive bias mitigation.

In the field of media and communication studies, quantum computing can optimize informa-
tion dissemination strategies. Quantum algorithms can analyze social media trends in real-time,
predicting information diffusion patterns and identifying potential misinformation sources. This
capability enhances media literacy campaigns, content moderation policies, and crisis communi-
cation strategies.

Looking ahead, the continued development of quantum hardware will determine the feasibil-
ity of widespread quantum adoption in social sciences. Advances in fault-tolerant quantum com-
puting, hybrid quantum-classical algorithms, and scalable quantum architectures will be critical
in bridging the gap between theoretical quantum models and practical social science applications.
Researchers should explore interdisciplinary collaborations, bringing together experts in quan-
tum physics, data science, ethics, and public policy to ensure responsible and effective deployment
of quantum technologies.

By integrating quantum computing into social science research, we can unlock new analytical
capabilities, address long-standing methodological limitations, and shape a future where data-

driven policymaking is more precise, adaptive, and equitable. With proper governance, ethical
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oversight, and technological advancements, quantum computing will become an invaluable tool

in shaping the future of social research and decision-making.

6 Conclusion

6.1 Summary of Key Findings

Quantum computing has demonstrated significant potential in revolutionizing social data pro-
cessing. Unlike classical computation, which relies on binary bits and deterministic logic, quan-
tum computation introduces probabilistic computing methods, leveraging superposition, entan-
glement, and quantum interference to perform highly complex computations efhciently. Through-
out this study, we have explored how quantum computing can enhance social data analytics, from
improving computational efficiency to enabling new data modeling paradigms.

One of the core contributions of quantum computing in social data processing is its abil-
ity to handle large-scale, high-dimensional datasets with improved computational speed. Tra-
ditional methods for social network analysis, sentiment classification, and economic forecasting
face computational bottlenecks, limiting their scalability. Quantum computing algorithms, such
as Grover’ s search, Quantum Fourier Transform (QFT), and quantum clustering techniques,
have shown the ability to process and analyze social data more efficiently than classical coun-
terparts. By reducing computational complexity and enabling faster optimizations, quantum
methods allow researchers to process real-time social data with greater accuracy and efhciency.

In terms of feasibility and challenges, quantum computing in social sciences remains in its
early stages, requiring further exploration and development. Despite the promising advantages
of quantum-enhanced machine learning, data classification, and decision-making frameworks,
practical implementation is constrained by current hardware limitations and algorithmic bot-
tlenecks. While several experimental validations have demonstrated superior performance for
specific applications, large-scale quantum computing adoption in social sciences will require the
continuous evolution of quantum hardware and the refinement of quantum algorithms to ac-

commodate real-world social data complexities.

6.2 Limitations and Challenges

Although quantum computing presents numerous advantages in processing social data, its real-
world application still faces several challenges. One of the primary limitations is the current
state of quantum hardware. Quantum computers, such as IBM Quantum and Google Sycamore,
remain in their nascent stage, with limited qubit coherence times and error rates that hinder com-
putational accuracy. Quantum noise and decoherence continue to pose significant obstacles to
executing complex quantum algorithms reliably, affecting reproducibility in quantum-enhanced
social science studies.

Another major challenge is the adaptation of quantum algorithms for social science applica-

tions. Most existing quantum algorithms have been developed for optimization, cryptography,
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and physics-related simulations, requiring extensive modifications to fit social data structures.
Many social science models rely on probabilistic reasoning and causal inference, which necessitate
the development of specialized quantum algorithms that align with social data representations.
The lack of standardized quantum methodologies for social data processing further complicates
the practical integration of quantum computing into social research workflows.

Furthermore, quantum computing requires significant expertise in both quantum mechanics
and computational social sciences. The steep learning curve associated with quantum program-
ming languages, such as Qiskit and Cirq, presents a barrier to widespread adoption. Without
proper interdisciplinary collaborations between quantum scientists and social researchers, the
practical application of quantum computing in social data analysis will remain limited.

Finally, ethical concerns surrounding quantum computing applications in social sciences must
be addressed. Quantum-enhanced machine learning models may amplify biases present in train-
ing datasets, leading to unintended consequences in decision-making processes. Additionally,
quantum decryption capabilities pose risks to data privacy and security, necessitating the de-
velopment of quantum-safe encryption mechanisms before quantum computing can be widely

deployed in sensitive social research applications.

6.3 Recommendations for Future Research

Given the immense potential of quantum computing in social data analysis, several key areas of
research should be prioritized to further advance its application in social sciences. First, future
research should focus on developing more specialized quantum algorithms tailored for social sci-
ence applications. While existing quantum methods provide computational advantages, their full
potential remains untapped in areas such as social behavior modeling, economic simulations, and
public policy optimizations. Researchers should explore hybrid quantum-classical approaches to
integrate the strengths of both paradigms while mitigating their respective limitations.

Additionally, further advancements in quantum machine learning are needed to enhance pre-
dictive analytics and decision-making in social sciences. Quantum-enhanced neural networks,
support vector machines, and reinforcement learning frameworks offer promising avenues for im-
proving sentiment analysis, voter behavior predictions, and public sentiment modeling. Future
studies should experiment with different quantum models, evaluating their performance against
classical benchmarks to establish their practical viability in social research.

Another important direction is the integration of quantum computing with large-scale so-
cial data sources. Many real-world social science applications involve massive datasets collected
from digital platforms, surveys, and sensor networks. Researchers should explore quantum-based
data encoding techniques, such as amplitude encoding and angle encoding, to efhiciently store
and process social data in quantum registers. Developing efhcient quantum-classical hybrid data
pipelines will be critical in bridging the gap between theoretical quantum advancements and
practical social data processing needs.

Moreover, the evolution of quantum hardware must be closely monitored to determine its

readiness for large-scale deployment in social sciences. Future studies should actively test and
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benchmark quantum hardware performance, identifying optimal conditions for executing social
data analysis tasks. As quantum computers progress toward fault tolerance, researchers should in-
vestigate scalable quantum algorithms that can handle progressively larger datasets with increased
computational accuracy.

Lastly, interdisciplinary collaboration is essential for the successful adoption of quantum com-
puting in social sciences. Future research should encourage partnerships between quantum com-
puting experts, data scientists, social scientists, and policymakers to design ethical and transparent
frameworks for quantum-driven social analytics. Establishing academic programs and training
initiatives focused on quantum computing for social sciences will ensure that researchers are well-
equipped to leverage quantum advancements for societal benefit.

By addressing these research priorities, quantum computing can move from theoretical ex-
ploration to practical implementation in social science applications. The future of quantum-
enhanced social research holds immense promise, offering transformative capabilities in data-
driven policymaking, social behavior modeling, and economic forecasting. As quantum technol-
ogy continues to evolve, its role in shaping the future of social sciences will become increasingly

significant, paving the way for new methodologies and discoveries in computational social re-
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AL HE IR (Qubic), HaJLUETEME, XS a F R ke sl
AT R E NI RAE S, RIS L . Plde2= I AL ot IR AE AL B At
ST AT WL, RSN B 2 AH ELAR I | MR O A N S S S AR A PR AR
Ak, SEFIFERN AT TIHHRERCR, 0 NSRBI RT o e 2L 1 3
A

w A S SRR A SR T B BT VL ) — IR AR S 5548 . Grover 8 R AL
( Grover’ s Search ) il T B 728t ( Quantum Fourier Transform, QFT ) % TR N
FEoB A TR AL TS, AR S R G R AT R RISCHR A AT R IR R AT
IR ST AR A AT DA R R AT A A, XN TR AR BB . BB RIBRE B
BECEZ, AR T EFIHE ] B S E A B b i 0Pk, I PR R Zeit o
SR T

1.2 W5 L

RSB AT R T T B R, Hm R B | S 4E B A Y e ) (i A
BT M) BA IS, M ERAR RO — RS UL B R sR i, XAER
SRR EAATZ N, AL . BORBUAA T AL, 52 MU I Y AT b )
IR, |EFRIEREE RIIR R Z A, T J T3]

AR GRB O A RE I il o TEAE SR L DB B A S, R
FAT At S E PR i N G R LSS S BORBES L 2 L7 7 S VA
ST RGE S HLBERE AT . Ah, RN sTE e B, &
L RENS R BRI S M, o P IR AR BB R

AN, AR AL PR AP EE o A O T B TR, B %% (Quantum
Encryption ) filig F L2 ( Quantum-Secured Data Processing ), #F58 A Gt Al IFEHf
PRE i Z 2GRS T rugat 80 . B IR RS IEA BRI G EBER W EN T
TR, SO0 TEYY . BUR RIS S S Em it ag | ARS8 o
Br, WSS NG AT LUE RIS T s R, At AT oy . e B RIBCR il FF R 1)
J7 Tl

1.3 SCHR Al

IR S SRR RS & — R S R SR, A B A R G 1 AR T
Giita . S pLEn s S FRE R b o SR, XEETTIEFE AL A . ARSI AL RN R A B AR
BHEEFERIBR IR . R 4E, FIHEEWZ B8R R o, (HHAEA SR Sl 1
RRESD o B THERSIFSEIRTT TR R 01258 & BRI T O s AN T 3 i B Wl 4 7
P, JFaRiE T AT SEUR R R B

ARG S A% O SCER B FE : - A S8R AL B D7 3, an Rl Y | DL i S o 2
( Bayesian Inference ) FIFIZEMLE, X LTk O 2 W THE2% . ST RERR . -
A AR, AR TR, #] (Quantum Gates) FliE il ( Quantum
Measurement ), ‘ENTAIF LK E T EA SRR R4 THUSHER,, - 78R a Tk,
 Grover %, & FH MR AIE R, XERIRTETT AR MY RPE R
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P T W

TR RIER T ' T AT A SR AR R . 4k, BT EmL
(QNNs), BT ZHEmEIL (QSVMs) MlgTEM4Hr (QPCA ) UG TR, 7F
A7 R AR IR B T s ) R A AT st RS R E 2GS X, (R I 58
B L A AP A U R R ORI ST . AR, 'R A R
A ARSI IRAAE, EEAFRIERRRG] | AR e MR ] g Rt

1.4 SCEEZEHY

ARSCEANT . - 56 2 W4 1 TIPS LR, TRANPIE 1 HEEAR U N A A 25
BHE AL PR RO . - 26 3 W iEiR T & TR e Bl A R T IA AR, A T
BRI SR P B RR | BRI RIS . - 5 4 W s TR
HRAES AP e I g a2 R U & ey S i 75l Sl A S IR T ) BT TN P
LSBT, - 5 5 WOV TR PIHRAEECRHE . e R AR B L 2R - 5
6 WY A T EEMFTOR B, FEXFARARMTET R i, SR TR A S N TR RS
MAORIEEETTT

2 P RAEAL R AL P o Y B e S A

2.1 UGS 5 T e

Z TR AR JE I T R AL ( Turing Machine ) F1i5 - #54K 2 4549 ( Von Neumann
Architecture ), 7EXMIEIT, JHAMH SR (0 80 1) #EATHAE . MR i e
PRI SOM T TIE R, X —HEZRHES) T TR & R, (RAEAL PR Jenytt o5
Bl (PSR B35 R BR M, JCHIRTEW SmdEas i) . B AR L BRI IR) 1

Jy—Ji, A HE TR (Qubit), HATLUETEMA, XERE EA10] LAE )
FOR 01, TR, IR DI E MU S BE B S,
Hh, 7298 (Quantum Entanglement ) {1521 AR Z I RPRSA BOCHR, IS5
2R MBUR AT ERCR . & F T8 (Quantum Interference ) #F—EA0 4L T 8 A2 A
RO, P T RARAE S5 2 R A

ST AEAL R T P B — S SR R BRSO A 1R S AR R, X S8R g wfE LA A
PKE S oM . MERMERAER E T . IR RE AU 2 AT eSS RS IR
B, EHACA IO AT PR | 1158 Y HIOM 258 e A0 45 [n) S A4 A e 5 |
7

2.2 JH T Hlie b PR TR

HPERAE T 2 FER R A, MR B A T R, BT EE MR (Quantum
Fourier Transform, QFT ) J&—FH T 8de i i s i AR, fEEFilary I G S
AOFER FHH A5 AR . S HZ M BIEMI L, QFT ol B8 EOE, (HH R b
A SR KB AR AR W BEAR e B, . QFT 7EAiAt st ook y& v A il v g M s L SR
GG Sl i A B T o T R A
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Grover R P I —FOCHEM & F50%, HEBW L&k S o iR 451 1k
R XA SR AT O E L, U HJRTE RS 2R S h i RAH G E By
Yisep, flan, E RS T, Grover Bk ] LS RCHiR A B LBOR YLK . 14534 T
LSRR R B

A5 5y i FRAE SR i % ( Variational Quantum Eigensolver, VQE ) Fl &t + i UL fb 551
( Quantum Approximate Optimization Algorithm, QAOA ) 45 F LA B AR T # S & 4
BARACIBUR #7256 o X BT iE T T LAt SRl h i PR AL, QnEORAIL . 25 i
AT AL BN, fEATA4seah, QAOA Rl T T BEMR AR, LUEIRA
PR R R 2 R IR R A

WA, HEFEIETIATAAERHEESE 725 . RSB BHOR . Xt i 4t 28t
WS RES TSI RS ATE ) . T3S S VRN LA S B A v 1) S SRS

2.3 I Hlave -~ ke Rl

g~ (Quantum Machine Learning, QML) A3 T & 155 A T EsC XA il
o EFMEMLZ (Quantum Neural Networks, QNNs ) 38 i F| 5 4D e 28 Bpf 28 k)
LEIRRE, PR ARG AT R, X SRR AT . AEAE AT RN AT B HE AR &R
b HA RN SRS 2R REME, QNNs BEBE[F] I A SCAEHE Hif 4%
PRGN, AT B A AR B S A A 1

3 AF L ( Quantum Support Vector Machines, QSVMs ) FFH i 4% 26 &2 241y
FEBHRHAT 2, RS T 2R mEIL (SVMs ), QSVMs TEBUATIN . {42
TR RN B GE 05 e A e lan, eATeT LLs R s fride RS . ez 45
B, IR TR R Ry s A B A e I B OB AR L

FiRf2% > ( Quantum Reinforcement Learning, QRL ) & 1155 380 H] T o fb
ATHEZE, TARALShAS A P E s o X —J7 A A L BOR YRS . SEIF A 38 W2 > R GE A
N LB RGBT B T2, i, QRL ] HF IS4 SEUR, [THUR RS SEHT
IR A O A RS 200 o SN NTITE 1 7 AR = BTy VA S M= i

HIIREETTE (Quantum-Enhanced Clustering Methods ) {4423 3B 7347 B IAS B4
TETTGIESE . AU SRR A A IR 5 PR ISy il B . & RIFIRRE LA
BLEE AR TPt A BRI 4R 8 , SRt PL A2 2 . KB T 25 S AUk 43 A1 AT

Wi A S SRR S, PSRRI DI R T, DI & 4+
PG ESC R, TR R AL IS . ORI L R SR HE S Ty TR Y fig
71, tRBE TR SRR — K RER

RIS S S TR A G o B AR AN A 25 R SRR — ARt T — AR
BFFEDT M) o FiE B 25 R i & DL R TR T et T, iR SRl i
SUMARERREEEA  ER S B FBUR ) P AR B i vk

37k AL T AR
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3.1 AL SRR AE S AL P K

FESBARATR FRE I, K5 SRR LS Sh A I P A e TR M E LA 2L
AP BEEE . R, TEE AR T IHE ks T g

SERPE R SRR A S BARRIR I A, G IR AR P S5 R AL R . 4RSS
TR g5 B, DL RS SRR SR AR A A A B o A it 22 R AL B B 2 R
SRR R gt HLE], AT DOE S IR IE SRS ( Amplitude Encoding ) Flgk i X 44 77 7k
( Tensor Networks ) S — HR, LR MELIA B0 A X S A 8 dEig =0, 23
7RI RS & BRI T .

AR L AR IAEA A W ot AR Z B BB M A E T, AT .
BURFLOIYEE . ST B T I 4E KX ( Curse of Dimensionality ), BIFEE £
HEREIGIN, THET R RIS . mE T EEA A R (A4S A (Hilbert Space ) /R
B, (A AErt 2 2 s R A B He 400 T AN = 34

AR A SEARE T MR 2, R ANRAT A SRl E B RUR IS AR . 255011
B, W SRR (ARMA ) FIPEAPRZE 4% (RNNs ), 385 77 2R S5 f)
ZINGA e A, Mz aE FREYITE (Quantum Random Walks ) Fl& - /R i) K
1 ( Quantum Markov Processes ) Jii A& B [H] Fp A4 BEAE DL EE =R 19 77 o AT i Ta) AR
KL AT R, $RE R SIS 3 o M R T MR

3.2 mFHHRFRR

TER PR A RO TR B 20 E S, XA B TR & Pk T s g, 41
i gmid e TR I A SR 0 BERIE TR, AR 7 I XA R ik S B A A

i AP KR (Quantum Bit Representation ) 4 28 Mk 23 %040 70 R WL 21 & + LU 4F
( Qubits ), MIMTSLELZANBARIRSRIFATALTE, AR T 28 IR g, )54 6 B B s
(O A1) FEEME R, BT dmbI 2 n 52 S AU 18 B O TR

friEsiS ( Amplitude Encoding ) J&—Fh 2 MMk, B SIEEE Sk AR TS
AR IR IR T o X7 A5 R R B S RE A8 LISE s by Jr s . i, 4k s 9 44 S84
BT LA O S B i T 2 Aras AT DL A 28 e A S e A6 14 43 H7

R 4iRS ( Angle Encoding ) J2& ) —FP8CE e 77 3, Bl B0 A g i i 1 S e
o RN TTIEREIE T T AL B AT HE 28R, O At R BT AN R I A o3 A o Sl e
TATER, Mg R AL AT B S R B AR

3.3 #E &g b nd B Ak

RS THAIEOR, AT RO, BRe A S N AU e i rt 25
B TP DU R ILROSHE S B dR o r BAA s A, dhE LT
. BEFHMFEEAEFRES,

wFHEHTE (Quantum Random Walks ) 7EMZ5 M52 7 257 . S4MBEVLT
FEM B HBCIRS Z MM BER A, R ER S-SR, RBHREZ
AR X PR PR (T LR 8 T R A5 b A AAE B AR AT S 2 v T et AR, UM e T A
IHUIERER S
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HFHFFZH (Quantum Matrix Operations ) 78 PRI S HERT Rk 2 55 s a8 e 25 SC B AR
Fo 2t R0, Ingst e (SEM) FIRF0T (FA), STFEMRMEAMRE AR, &
TFA AN (QSVD) T EMHr (QPCA) WE MM TiXER, KT B R IE
N Z TG T (Bl B B] o X ek e B a1 fE At S EA P2 B A 4R Hh P UNNE R 45 49 11
REJT.

R R A2 (Quantum-Enhanced Clustering and Classification ) $ A 7E 45 41
SRHRIE BUANAT AL T R TR KA. BT Grover BRFA LMW ET k-HHER
( Quantum k-means Clustering ) 7EfE/rBCAT: 55 B T YO, teoh, & FIURZEEHL
( Quantum Boltzmann Machines, QBMs ) f@fit | —Fh i AR IR Ir =, e 1
55 SRS RN B YA i ] 1) 432K

W R TIEEARE S B SR s, PR AR BRI AR, AT A sk
MIREARL, IR AR E 2T o B O Rk 2D 32 Ty VR AR A5 R B
AIAT, AR S o) TSR0 1 A A g T R

4 IR RIE S BB

4.1 AL AR AL B S

=R 2 BE o A P R AR A R B A AR SR AT SR . HAT, 1BM
Quantum Fl Google Sycamore 52 T3V G2 79I, TS miE 1
ko

IBM Quantum @ HBEEET 25y &AL B AR UTRIACER , EWFFE N A REOE TR FLC iy & 7R 1
b E TR R B s T SR A BT Ss, FRATT AT LIRS HAR R T A i
FHEZREBE . Google Sycamore #EFIHHML, FL& 53 |F I, SRl FIoseE:, ik
W TR E RS b, Bl OB MU AL, X RE ) iy ins i et 2 R it
T AR

— A LA A R 2 MU S S A BRI S 2 R o B O A O T
FEREARe . RFAEEL A AN S R Al R A, PR AR 2R W R 2 U . i ]
VAR T L2838 (QFT ) F1 Grover 48 2 SE5ANS X SUAE 55 SR KLU . S04
REW, MTRGHIESE, & FRENHRRCRA Y BRI T 205, RSO R
HAL BN R AT AT 4 o

4.2 W HHZEP 1. BT R AL S A b

A ML — DR IRARG, HpWa (DASER) il SR AT, PR S
RO HTE LA T Rt OB 5 o

PRI TOE IR TALSC RS i, AR B BUE BRI TR R TR . 5
ZUEEYATEAR, BRI ER R TS R R R 2 . X —FE AR
FEAC IR Z8 T A% O AL DRSS IR R E AL BT, i, B FHY5RAY PageRank
FRARES U RS HEA R, AL S T 704 o

Iy — AN GO T IRE, B TR AR R . ISR M T T 2
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MBMEARMACTE S HEEAT NIRRT 5 BRI ST, WA ERN, MET2
SN E T, T PR SRN AT LSNP RIS A DS

4.3 BLZEG] 2. # RIS R R

TR IS B A AREIE . TSI 2SI E R TR RS KB T4
A RIEFAR (NLP) £oR, @il FbRBOblss -~ nds. Britiaida
SRR IUPRAL T — R R, AT R AT T o

T HARE S (QNLP ) H IR T HUFR EBSCAR R I ARE RS SO R . SRS
R AT R SRR 2 NLP R R], QNLP i i1 2198 BA RObA 52 F S0kt
Ko AR THRAYSER T, QNLP /s H 3 SCAR I JEUER RIFFEAR TR R 2P BE

SRR (QSVM) #E— e TR IERE S, R TR IE LR
Ko L SVM TR AR By 2 SCA R INAE AL 2R AP AT SR, il QSVM il il 8 1
FATHHRRE S LA IR SE U A 0 JAT 55 o #E Twicter MUHTHEHR AR AT I S8
QSVM FETH5R 8 AIERA LT L T2 s o

4.4 PIZGI 3. IR E 2 TR R N

ZETT PN PY BT o SRR N AR S ARG BN kAR T T R 285 B | i [P
PAx TR e by i 1) T o S O - o e W 2oy s R B/ R b e S =00
PRITEE, BEMS LA R A J3E RO i P B S5 A T T A

I ] P8 AT 5T A s 2 [ A i B s TOIORS E . pildn, BT
358 By IR AT R ] LU ERf LA 3 GDP S8R | KR MBS Il 00 . a4 G Rl Ak
PSR T2, DA AT AT B OB, LU P Bk g i SR 2 OB &

i) (QRL) e TR LA ST R IT MR 73— DA RIS . QRL 5
TEA R T BRI R R 2 ORI A, ISR . AR AT+, QRL
UER BRI S S BOR . SE PG XU DAl , AR TR IR T IRRAICR

WX BRI, TR RR T HAEZ M 2B e r Sl i e g . BEE R T
BEPF AT R BB, BB A S REE O P N R H 22 vl 1T, AT ARt
FITREBT Y I

5 BURRZ -5 AR K i

5.1 Xt bt AT

B RRE AR SO e A R OT IR T R IR S RS, IS R0 587 I 1)
WAL . LG TN T il E PEARE MG Tk, TEAME LUt 2 B s P R BENLIE
FARLME SIS AE . RIS A TR, R R T2 Ay g n] LR Ak # 2 4>a) fig
MZER . X—RESIHSR THasr . BURS AT & T P A TN A BRI SR A S
BRI SREA I — D i R TR AR LA B S AR R IR E el
TSN, AR EIRSE | ARSI SRS Lok AELF & s . 2t
Y R A B TIAL BRIV AR AR A RE IS Ik Lot o, i i3 5 ) et il 15 B g £k
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TR R, SR TR X — RO e BERURA BT o B d
fE T FT R AT R

HeAh, R TR TRARR R, L T BOR R R R E A . FZ AJEEOR B
i, PTG I . BUBCRIS AL A8 A BE, 8 B A, sk, i
TR (QAOA ) ML TR Ry (VQE ), AT LA S P K gk = 1]
MR e A B T3 58 o 3k e b (sl O 1 2 4 RE A8 21 T I AU A A 8 Rl o M
H SRR A B

5.2 1IN RYAE RS 16 A

Wi =R 2R RN H g2, KSR TR E L, Hob i 2
M — AR T IPR SRR e %, B2 e 1 IRk L
SRMEPIIEN R AR AL BRI AR, AR T IC S . SRAT NI A S5 R . PR
AT TN P, AL rTRE S I R 2 BRAL BT R XS, o BRSNS IR il 72
WA T Ia i TSR, IRt 2 dn i 4 2 H.

73— AR A DR B[R] R B 1 RS N T RE (AL RSB M, FfE & i B THLas
FAIRBURYRE ST, R ARGE P TR A I DL TRDE AT eI o Bl ~ B AEAS ST DRt Ak B
R, (HENTATRE R MR AL R BA R IL . X510k TA KA P, 5
FEPEFIEV R R BT, JUHOUZAE AL KSRt s ORI 2 o ARk BTE BRAE L i & AH
IR AR, AT 1b 1 AT R A SR B A USRI SR% D I

BEAh, FEARJERE BT REORN, 6725 B BOR MATTR . ARLEA 2 T-iF5E
ERABEBREZE A RES AT AT, i EEORIRE E A 8 PG BN A vt
PR fe, bR TP n A R E L A A, R IRIEUA RS BES . AriEdl
AT S R AE SRR S [T AR 13T LS Bl PR 2 TR L

5.3 ACkER. #it RS A TE ARSI E

B RSATERE (AD MESHIEPEMIESRC RSP AIE. 1 ALFHE T 170
JEBRR SRR L 7 T A, S TR MBI e . X — R G o Rl G ok TR 2
TETERN, AFEAT T | 28 AT R A ARG 48 A

T AITEZ BT GUR AR JE TR . 28 28 Do B T e AL IR BOR BT 47
TEAEMELUTH B F R R M. BT IR AP RERS [F] I AL B2 2 57 I 5, 45
FARRIEMB O R FBEYLVEALINER o X —dE 20 rT R T Rl KU A | 52 5 BORBLAU AN 4R
Yy e PE TN ARG T

I3 —AE IS O B2 FA IR o AR BIA Y, NSRS R B
R TAT N, IR AE R AA AR S BB o S8 A e AR FH & 7 AL, BT
SURT DA B AER R AZRATONRAL, DI O BRI, TRORIGRYT L BN R 22587 155
SR

RER N LI Hie S o e AT 7/ S 7 L B o R 3. 2 1 i 'l
s, G SR, RO E R R S BRI X —RE A B TSR AR IR AT
WA LR A R S HUE R P
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JREAROR, R A R e it TR AL SR TP R IR AT AT R . AR T
R | IRGE T-SURE R BUET LUR al 3 R By 1 AR kA Bg 1 5 5
PRt b Z B 220 R S . P N BB RS AR5 1, a8 T, Bdnst
7 ACHEE AL EOR G LK, ILFEF IR T BRI S ST R R o

W IR AL SRR, AT OB R BT RE ST, i R AR 50k
FJePRE, AR HE . A IE NN AP R IS BOR M ST . R IR B, /B
B ARG RS T, PR O & ARAL AT SRR B2 T A

6 %518

6.1 FEMFILE S

VIR 2 M Ak BT i R I A A ROV Sy o S MO T LR R R 1 R 22 i
HRAR, BRI THRITRINE, FHEN ., MR T FEAR ST 245
AOFTH T TR g s SRR AT RE ST, R R RCR B SR U A
o

IR A 2 B AL B AP R0 STRRAE T RE A LA S g AT 30 S AL R | v 4
Btk LonItta MLt BRI SEIZ TN 7 ik s S0, BRI AT R
BRI, W Grover R, T MHEM AR (QFT) M FRIEA, Binmi ks
UL REU S LIS = - B i o o (N a g NR/ S G D) B U /K E O S o R RN L RWNAY 12402
SEERR . S e A AL PSR o il

SCTATIEMBEERINT S, IR e SR SURA AL T R IIB B, F E i — SRR IR
J&o JRUERTHERYLA ) L B RIS B A TR Ty, AEHSEBRN FATS 32 2 Hip
R R AR AR  20 . BARE A LR EIE 1 iR AER e N P A, (HAt )
AT RRRER AT 5 1 BB PR A 4p 2 A SR DL KT Bk ekt LA N St 2 i 1Y)

SRTES

6.2 JmfR M 5Pk A%

RGP IR AL 28R A By i BA V20, (BRSSP AT R v i i 22 Pk
Horp e 2RO BRI S AT 7 SR A & B /KF . IBM Quantum Hl Google Sycamore 254 1
TR TR B, 32 BRTA FR A LA T R RIS e A DR, X5 1 T
S T MR TR AT R IE T R E R RER, R T TR AL SRS
R B A

I3 —A> FEPOE R B T SEE ML R . RO R TRE BT
At A YR, F AT KRB REE H TAL BRSP4 2R e il
MO AR AR AR RN, NI 20T A St 2Bl R AL B i & HTHE 1500k . Rk
Z AL T R AL B 2Bl , XN T A EAL S IR AR AR A 5
PREsGaERE
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6.3 AKAFE AN

BT R PR S BE o B R R RIS, ASRBLAL e T LA R s, Ltk — Pt
HAA B2 RN . B5G, ASRBEFEN LTI A s Rk &b AT A & HTHE 53300k
SRS W& T IR B A U, (BAEAEA iR . TR AL BOR LSS
G, P AR R T KA. BESE N RNIRRIE G & -2k, UG PR I,
[l ve e ss A R BRYE o

Beoh, St R R LA, DIESRA R TR A TN o B AR R BE T o T
SEAPZE LS SCRF AL (oo I HESR AL T AR T ERAT R TIUIAI23 AR I 4 i
BRI ATRENE . AR AT Z A R R AR, JRREHAERE 5 S MR T UL, DU E
HAeA 2 REA T B SRl A7

R X ST A, B T OISR R L 1) SR T, S B B Sl 8 R
TE AT R Z TN B R BE ) . BEE BT RORRIAI &R, HA e ittt 2
PR BRI AL MR M 22, Dyt SR 2 T TS L A BT RERT Y 142
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